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Abstract: This paper aims the method of estimating unknown system characteristics (desired signal) by using the 

system identification method. The design of such system belongs to the optimal filtering domain, which is originated 

from the work of Wiener. In such applications fixed or adaptive Filters can be used. Fixed filters designed based on 

system prior knowledge, but adaptive algorithm based filters consists the ability to adjust their own parameters 

automatically and can match their (unknown system) characteristics with desired system (known system) 

characteristics. Design of these adaptive systems not required any prior knowledge of system characteristics. In the 

proposed system parameters were estimated using various least square adaptive algorithms. Since a finite impulse 

response(FIR) filter only has zeros, is stable irrespective of the filter coefficients, this work selects a FIR filter as the 

base filter. The adaptive algorithm used is Least Mean Square (LMS) and various LMS algorithms like Normalized-

LMS, Signed-LMS, Signed–Signed LMS, Signed data, Signed error etc. The proposed work used C software to 

develop System identification with adaptive FIR filter using various LMS algorithms and also implemented this model 

by using TMS320C6713 DSK for Real Time Applications. Texas Instrument (TI) assembly language can be obtained 

by using 3.1V Code Composer Studio (CCS). 
 

Keywords: Adaptive algorithms, estimation of unknown characteristics, LMS, NLMS, signed error LMS, signed-data 

LMS, sign-sign LMS algorithm. 
 

I. INTRODUCTION 
 

Methods of Adaptive filtering are used in a various signal 

processing applications like echo cancellation, adaptive 

noise cancellation, adaptive equalization, system 

identification etc. An adaptive filter is a self-correcting 

filter that uses an adaptive based algorithm to “design 

itself”. In the proposed work an algorithm called LMS 

algorithm is used to develop an Adaptive system to 

estimate or identifies the unknown characteristics of the 

system, which includes a filter, called adaptive filter [1].  
 

Adaptive filter output should be zero or less i.e. an 

adaptive filter has to minimize “error function” itself by 

using error correcting algorithms. This can be 

demonstrated by using FIR fixed system as unknown 

system shown in Figure.1 [2].  
 

The adaptive system estimates the characteristics of 

unknown system and obtains same frequency responses as 

the given desired filter response like low pass filter or the 

given band pass filter. Bernard Windrow and Ted Hoff 

first proposed (LMS) adaptive algorithm in 1960 by its 

originators [3], [4].  
 

LMS algorithm is the most widely used in various 

adaptive filtering algorithms due to its simplicity [5] i.e. 

robustness, low computational complexity and reliability 

to signal statistics. Unlike other adaptive algorithms, it 

doesn’t require complex computation like measurements 

of the pertinent correlation functions and matrix inversion. 

Adaptive filtering is more effective than linear filtering in 

cases where the signal information is not known (either 

statistically or exactly) or the conditions change with time. 

 
 

This is because adaptive filters are time varying and non-

linear, with characteristics dependant on input, output, 

and/or environmental values.      
 

The adaptation is brought about by altering the values of 

an array of adjustable weight elements at the input. The 

closed-loop adaptation is necessary as no prior knowledge 

of the input signal is available and it is required to track 

the error. Closed-loop adaptation is also more stable so, if 

part of the system fails then the adaptive filter will work 

around that part to keep the filter working as efficiently as 

possible.  
 

A closed-loop system can be potentially troublesome 

where a performance surface has non-unique optima, as 

this introduces uncertainty as to the outcome. When 

designing a closed-loop system it is also important to keep 

the system stable by keeping the speed of the algorithm 

down far enough so that the output will not grow and 

diverge instead of converging on the minimum as it is 

supposed to. 
 

The proposed system is application of System 

identification which uses an adaptive filter and shown in 

Figure.2. The Signal is corrupted by additive Noise, and a 

distorted but correlated version of the noise, is also 

available. The goal of the adaptive processor in this case is 

to produce an output y (n) that closely estimates the 

desired signal using various LMS algorithms[2], [3] which 

is known system, so that the overall output of adaptive 

filter will closely matches reference signal as Error will be 

minimized to zero [3], [5]. 
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II. SYSTEM DESIGNING AND SOFTWARE 
 

In the statistical approach to the solution of the linear 

filtering problem, we assume the availability of certain 

statistical parameters (i.e. mean and correlation functions) 

of the useful signal and unwanted additive noise and the 

requirement is to design a linear filter with the noisy data 

as input so as to minimize the effects of noise at the filter 

output according to some statistical criterion. A useful 

approach to this filter-optimization problem is to minimize 

the mean square value of the error signal defined as the 

difference between some desired response and the actual 

filter output For stationary inputs, the resulting solution is 

commonly known as the Wiener filter, which is said to be 

optimum in the mean-square error sense. Least Mean-

Square algorithm (LMS) is the most used technique 

concerning adaptive filtering. The LMS algorithm updates 

the adaptive filter coefficients from sample to sample as 

expressed in the equation (1): 
 

Wk+1=Wk+2μekXk              (1) 
 

Where, X and W is the input vector and coefficient vector 

of adaptive filter. µ is called step size parameter, which 

controls the convergence of the algorithm. ek  is the 

difference or error between the adaptive desired output 

and the actual output, it is used to adjust the filter 

coefficients. This work implements the LMS algorithm to 

design an adaptive filter for System Identification 

approach using a Texas Instrument digital signal 

processing (DSP) board. An adaptive filter is a nonlinear, 

Time varying, self-adjusting system. It is more complex 

and difficult to analyze compared to a fixed coefficient 

filter, but it offers substantially increased system 

performance when input signal characteristics are 

unknown or time varying. Adaptive filters are widely used 

in adaptive signal processing applications. Fixed filters are 

not suitable for such applications because the design of 

fixed filters must be based on prior knowledge of both the 

signal and the noise. While, adaptive filters have the 

ability to adjust their own parameters automatically, and 

there design requires little or no prior knowledge of signal 

or noise characteristics. An adaptive filter is composed of 

two important parts: a base filter and an adaptive 

algorithm. Since a finite impulse response (FIR) filter only 

has zeros, is stable irrespective of the filter coefficients, in 

the proposed work selected a FIR filter as the base filter. 

The adaptive algorithm used is the LMS algorithm, and 

the programming language used is C/C++ language. For 

real time implementation Texas Instrument (TI) 

TMS320C6713 assembly language can be obtained by 

using Code Composer Studio (CCS) [1], [6]. 

The General form of Adaptive filter structure is shown 

below in figure.1 and the algorithm used to update the 

filter coefficients is expressed in equation.2.[2] 
 

W[n + 1, k]=W[n, k]+2μ e[n] X[n − k], k=0, 1,..., N-1  (2) 
 

Where, N is the number of taps (coefficients) of the 

adaptive filter. X[n-k] is the kth delay of the system input 

signal. W[n,k] is the kth filter coefficient at time n (at each 

time, there are N coefficients to be updated). Step size 

parameter µ is selected by trial. e[n] is the error signal 

shown in equation.3. 

e[n] =d[n]-y[n]     (3) 
 

 
 

            Figure (1): A General form of Adaptive filter 
 

Here, d[n] is the output of unknown system i.e. desired 

system output; y[n] is the identified system output i.e. 

actual output of adaptive filter. e[n] is error between 

desired output and actual out of the systems shown in 

figure.1 used to estimate the characteristics of unknown 

system  by update the coefficients of the adaptive filter. 

The most recent N input signals are stored in a consecutive 

memory location, and at each time, when a new signal 

comes in, the oldest signal will be shifted out from this 

part of memory, and the new signal will be shifted in. The 

adaptive filter actual output y (n) is the convolution of the 

adjustable filter impulse response h(n) and input signal 

x(n), which is expressed in equation.4.[3] 
 

y(n)= h k x(n − k)N−1
k=0    (4) 

 

The implementation is verified by a given finite impulse 

response(FIR) low pass filter and a band pass filter as 

"unknown" systems, using the adaptive filter to identify 

these “unknown" systems. So the desired system output 

d[n] shown in equation.5. [3]              
   

d(n)= hd k x(n − k)M−1
k=0    (5) 

 

Where, hd (k) represents the desired system impulse 

response sequence. M is the number of taps of the desired 

system. The LMS algorithm is used to minimize the mean 

square error E[e²(n)].  If the adaptive filter has the 

same frequency response as the given low pass filter or the 

given band pass filter, it will demonstrate that the adaptive 

filter is functionally adaptive to the "unknown" system. 

Algorithm implementation is correct if adaptive algorithm 

estimates the characteristics of unknown system shown in 

figure.2. [2] 
 

          
 

Figure (2):  Estimation of unknown characteristics of 

an adaptive filter. A System Identification application 
 

A. Mean-Square Error Criterion 

Figure.2 illustrates a linear filter with the aim of 

estimating the desired signal d(n) from input x(n). 

Assume that d n  and x(n) are samples of infinite length, 
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random processes. The filter output is y n  and the 

estimation error is given by e n . The performance of the 

filter is determined by the size of the estimation error, that 

is, a smaller estimation error indicates a better filter 

performance. As the estimation error approaches zero, the 

filter output y n  approaches the desired signal d(t) and 

coefficients of adaptive filter are matched with coefficients 

of unknown system and hence characteristics of the 

unknown system is estimated. Clearly, it is required that 

estimation error to be as small as possible. In simple 

words, in the design of the filter parameters, we choose an 

appropriate function of this estimation error as a 

performance or cost function and select the set of filter 

parameters, which optimizes the cost function [3]. In 

Wiener filters, the cost function [4] chosen shown in 

equation.6. 
 

ξ=E[e(n)2]    (6) 
 

Where, E [.] denotes expectation or ensemble average 

since both d(n) and  x(n) are random processes shown in 

figure.3. 
 

 
 

Figure.3: A linear adaptive filter used for estimating 

desired signal d(n). 
 

B. Wiener Filter: Transversal, Real-Valued Case 

Consider an adaptive transversal filter as shown in 

Figure.4. Assume that the filter input and the desired 

output are real-valued stationary processes [4], [9]. The 

filter tap weights w0  , w1  , w2 … wN−1 are also assumed 

to be real-valued, where N equals the number of delay 

units or tap weights we can define the filer input x n  and 

tap-weight vectors, w, as column vectors.[2] 
 

X(𝑛)= 𝑥 𝑛 𝑥 𝑛 − 1 𝑥 𝑛 − 2 …  𝑥(𝑛 − 𝑁 + 1) ′ (7) 
 

𝑊 =  𝑤0𝑤1 …𝑤𝑁−1 
′    (8) 

 

The filter output is defined as, 
              

𝑦 𝑛 = 𝑤𝑖𝑥(𝑛 − 𝑖)𝑁−1
𝑖=0 =𝑤 ′𝑥(𝑛)=𝑥 ′(𝑛)𝑤  (9) 

 

The mean square error cost function can be expressed in 

terms of the cross-correlation vector between the desired 

and input signals, 𝑝(𝑛) =  𝐸 𝑥 𝑛   𝑑(𝑛) , and the 

autocorrelation matrix of the input signal, 

𝑅 𝑛 =𝐸 𝑥 𝑛 𝑥𝑇(𝑛)  
 

Subsequently, the error signal can be written as, 

𝜉(𝑛)=𝐸[𝑒2(𝑛)] 
= 𝐸[ 𝑑 𝑛 − 𝑦(𝑛) 2] 
= 𝐸[𝑑2 𝑛 − 2𝑑 𝑛 𝑤𝑇 𝑛 𝑥 𝑛 +
𝑤𝑇(𝑛)𝑥(𝑛)𝑥𝑇(𝑛)𝑤(𝑛)] =𝐸[𝑑2(𝑛)]-
2𝐸 𝑤𝑇 𝑛 𝑥(𝑛) +𝐸 𝑤𝑇 𝑛 𝑥 𝑛 𝑥𝑇 𝑛 𝑤(𝑛)  
=𝐸[𝑑2(𝑛)]-2𝑤𝑇𝑝+𝑤𝑇𝑅𝑤                    (10) 
 

When applied to FIR filtering the above cost function is an 

N-dimensional quadratic function [6]-[9]. The minimum 

value of 𝜉(𝑛) can be found by calculating its gradient 

vector related to the filter tap weights and equating it to 0 

shown in equation.11. 
𝜕

𝜕𝑤𝑖
 = 0 for 𝑖 = 0, 1, 2, … , 𝑁 − 1 

 

𝛻= 
𝜕

𝜕𝑤0
 

𝜕

𝜕𝑤1
…… 

𝜕

𝜕𝑤𝑁−1
 
𝑇

 

 

𝛻𝜉  = 0        (11) 
 

By finding the gradient of equation.11 equating it to zero 

and rearranging gives us the optimal wiener solution for 

the filter tap weights 𝑤0 shown in equation.12. 
 

𝛻𝜉  = 0 

2𝑅𝑤0-2p=0 

𝑤0=𝑅−1p                        (12) 
 

The optimal wiener solution is the set of filter tap weights, 

which reduce the cost function to zero. This vector can be 

found as the product of the inverse of the input vector 

autocorrelation matrix and the cross correlation vector 

between the desired signal and the input vector. The Least 

Mean Square algorithm of adaptive filtering attempts to 

find the optimal wiener solution using estimations based 

on instantaneous values. Where, 𝑤0  indicates the optimum 

tap-weight vector. This equation is known as the Wiener- 

Hopf equation and can be solved to obtain the tap-weight 

vector which corresponds to the minimum point of the cost 

function shown in equation.6. 
 

 
 

Figure.4: Structure of an Adaptive Transversal Filter [3], 

[9]. 
 

C. Least Mean Square (LMS) Algorithm  

1). Derivation of LMS algorithm [8]:  The conventional 

adaptive LMS algorithm is a stochastic implementation of 

the Method of Steepest Descent algorithm. It has derived 

by replacing the cost function [1], [2], [3].  
 

𝜉=𝐸[𝑒(𝑛)2] 
 

The optimum weight vector is given in equation.12 

𝑊0=𝐻∗=𝑅−1𝑝     
 

The gradient vector is, 

𝛻= 2𝑅𝐻 − 2𝑝         (13) 
 

Multiply equation.13 by
1

2

1 
R , we get equation.1 

Since, 𝐻∗ = 𝑅−1𝑝  from equation.12 and equation.13 we 

get the useful result of: 
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𝐻∗ = 𝐻 −
1

2
𝑅−1𝛻     (14) 

 

Equation.14 Changes this result into an adaptive algorithm 

as: 
 

𝐻𝑘+1=𝐻𝑘 −
1

2
𝑅−1𝛻𝑘                   (15) 

 

Equation.15 modified to equation.16. The following 

algorithm expresses the method of steepest descent 
 

𝐻𝑘+1 = 𝐻𝑘  + 𝜇(−𝛻𝑘)
        

(16) 
 

µ is a constant that regulates the speed and stability of 

adaptation. for detailed information about selection of µ, 

This work selects µ by trial. 
 

𝛻
^

𝑘= 
𝜕𝑒𝑘

2

𝜕𝐻
 = 2𝑒𝑘

𝜕𝑒𝑘

𝜕𝐻
 = −2𝑒𝑘𝑋𝑘    (17) 

 

From equation.16, equation.17 we can define a steepest 

descent type of adaptive algorithm as shown in 

equation.18. [5]-[9] 
 

𝐻𝑘+1 = 𝐻𝑘  + 2𝜇𝑒𝑘 𝑋𝑘                  (18) 
 

Equation.18 represents LMS algorithm [2]. This algorithm 

does not require the prior knowledge of the signal 

statistics; instead, it uses instantaneous samples. 
 

𝑋𝑘 =

 
 
 
 
 

𝑥𝑘−0

𝑥𝑘−1.
.

𝑥𝑘−(𝑁−1) 
 
 
 
 

; 𝐻 =

 
 
 
 
 

ℎ(0)
ℎ(1)

.

.
ℎ(𝑁 − 1) 

 
 
 
 

 

 

Therefore, 
 

𝐻𝑘+1 =

 
 
 
 
 

ℎ𝑘+1(0)
ℎ𝑘+1(1)

.

.
ℎ𝑘+1(𝑁 − 1) 

 
 
 
 

; 𝐻𝑘 =

 
 
 
 
 

ℎ𝑘(0)
ℎ𝑘(1)

.

.
ℎ𝑘(𝑁 − 1) 

 
 
 
 

 

 

So, from above equation (3.16) we get: 
 

 
 
 
 
 

ℎ𝑘+1(0)
ℎ𝑘+1(1)

.

.
ℎ𝑘+1(𝑁 − 1) 

 
 
 
 

 =  

 
 
 
 
 

ℎ𝑘(0)
ℎ𝑘(1)

.

.
ℎ𝑘(𝑁 − 1) 

 
 
 
 

 + 2µ𝑒𝑘

 
 
 
 
 

𝑥𝑘−0

𝑥𝑘−1.
.

𝑥𝑘−(𝑁−1) 
 
 
 
 

 

 

Let n stand for the time instant, k stand for the 𝑘𝑡ℎelement 

of input vector X and weight vector H or W. we get the 

following equation to update the 𝑘𝑡ℎ  coefficient at time 

n+1. Finally, the coefficient updating algorithm and say W 

is H and we can write as. [2], [4]. 
 

𝑊𝑘+1 = 𝑊𝑘  + 2𝜇𝑒𝑘𝑋𝑘           (19) 
 

𝑊[𝑛 + 1, 𝑘]= 𝑊[𝑛, 𝑘] + 2𝜇𝑒 𝑛 ∗ 𝑋[𝑛 − 𝑘], k=0,1,..,N-1 

(20) 
 

Equation.20 is the algorithm used in proposed work. From, 

equation.20 we can see, at each time n, there are N 

coefficients to be updated. LMS adaptive algorithm 

popularly used in adaptive signal processing. Since, 

adaptive filter is one of the most important elements in all-

adaptive applications. The steps involved in design of an 

adaptive are calculation of filter output, error estimation 

and tap-weight adaption which are shown in equation.21-

23[2]  

The proposed work implements the LMS algorithm to 

design an adaptive filter [2], [5]-[9]. 
 

1. Filter output: y (n) =w’ x (n)               (21) 

2. Error Estimation: e (n) =d (n)-y (n)              (22) 

3. Tap-weight adaption: w (n+1) =w (n) +µ e (n) x (n)      

(23) 

And also tap-weight adaptions for different lms algorithms 

are given in equation.24-27 [2], [3], [8]. 
 

𝑆𝑖𝑔𝑛𝑒𝑑 𝑒𝑟𝑟𝑜𝑟: 𝑤(𝑛 + 1)=𝑤(𝑛)+ 𝜇 ∗ 𝑠𝑖𝑔𝑛(𝑒 𝑛 ∗ 𝑥(𝑛) 

(24) 
 

𝑆𝑖𝑔𝑛𝑒𝑑 𝑑𝑎𝑡𝑎: 𝑤(𝑛 + 1)=𝑤(𝑛)+ 𝜇 ∗ 𝑒 𝑛 ∗ 𝑠𝑖𝑔𝑛(𝑥 𝑛  

(25) 
 

𝐷𝑢𝑎𝑙 𝑠𝑖𝑔𝑛𝑒𝑑: 𝑤(𝑛 + 1)=𝑤(𝑛)+ 𝜇 ∗ 𝑠𝑖𝑔𝑛(𝑒 𝑛 ∗
s𝑖𝑔𝑛(𝑥 𝑛 )             (26) 

 

𝑁𝐿𝑀𝑆: 𝑤(𝑛 + 1)=𝑤 𝑛  +  𝜇1 *𝑒(𝑛)*𝑥(𝑛)        (27) 
 

Where, 

𝜇1 =   
𝑏𝑒𝑡𝑎

0.01 + 𝑎𝑏𝑠(𝑥 𝑛 ∗ 𝑥(𝑛))
   

 

2). Step Size Parameter µ: Apparently, the convergence 

rate and asymptotic performance of the LMS algorithm are 

directly dependent on the step size parameter µ used in the 

tap weight adaptation formula shown in equation.20. 

When the step-size parameter increases, the LMS 

algorithm converges faster with worse asymptotic 

performance. Similarly, when the step-size parameter 

decreases, the LMS algorithm converges slower with 

better asymptotic performance [6]-[9]. The behaviour of 

varying the step-size is illustrated in Figure3. In addition, 

to ensure the stability (or convergent) of the LMS 

algorithm [7]; the step-size parameter is bounded shown in 

equation.28. 
 

0 < 𝜇 <
2

𝑡𝑎𝑝 −𝑖𝑛𝑝𝑢𝑡  𝑝𝑜𝑤𝑒𝑟
     (28) 

 

Where, tap-input power is the sum of the mean-squared 

values of all the tap inputs in the transversal filter and is 

given in equation.29. 
 

 𝐸   𝑥(𝑛 − 𝑘) 2  𝑁−1
𝑘=0     (29) 

 

Note that the upper bound is dependent on the statistics of 

filter input signals [4], [7]. Intuitively, we may interpret 

from this equation that when the power of the input signals 

varies greatly, a smaller step-size is required to avoid 

instability or gradient noise amplification [7]. 
 

III. SYSTEM FLOW CHART 
 

The figure.5 shows flowchart of the proposed work using 

LMS algorithm based adaptive filter design and flow charts 

of various LMS based adaptive filters can be represent by 

using appropriate mathematical functions shown in 

equation.23-27 for signed error LMS algorithm, Signed data 

LMS algorithm, dual signed LMS algorithm and Normalized 

LMS algorithms respectively. In the proposed work logical 

flow of estimation of unknown system characteristics will be 



IJIREEICE ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 

                           INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN ELECTRICAL, ELECTRONICS, INSTRUMENTATION AND CONTROL ENGINEERING 
                      Vol. 4, Issue 4, April 2016 
 

Copyright to IJIREEICE                                                        DOI 10.17148/IJIREEICE.2016.4406                                                                25 

as follows. Get the sample of unknown system i.e. desired 

system d(n) shown in equation.1. Calculation of output 

sample of adaptive filter y(n) using equation.2. Compute 

error using equation.22, equation.1 and equation.2. Compute 

the factor 2µe(n) and update the coefficient using 

equation.20 where, H=W in the proposed system from 

equation16-19. Calculate the error of desired signal and 

estimated signal continues the process until adaptive filter 

characteristics matches with the characteristics of unknown 

system. 
  

IV. RESULTS  
 

The experimental results show a system identification 

technique where desired signal has given as reference for 

adaptive system and input signal is given to the adaptive 

filter. The main aim is to identifying fixed system by using 

adaptive filter and the adaptive algorithms used are LMS, 

NLMS algorithms and various Quantized error algorithms. 

The adaptive filter keeps tracking the behaviour of an 

unknown system’s input and output, as shown in figure.1. 

The output of adaptive filter 𝑦(𝑛) is going to be as close 

as the unknown system’s output 𝑑 𝑛 . Since both the 

unknown system and the adaptive filter use the same input 

shown in figure.2, the transfer function of the adaptive 

filter will approximate that of the unknown system   

reference and is given to the DSP kit, where the actual 

adaptation takes place using LMS algorithm. 
 

 
 

Figure.5 flow chart of weight adaption of adaptive 

filter coefficients using LMS algorithm 
 

The proposed work focused on enhancing the performance 

of an LMS-based FIR adaptive filter for identifying the 

unknown system. The key reasons for selecting LMS as 

the adaptive algorithm is, Simplicity i.e. low 

computational cost and ease of implementation, Robust 

and Reliable. Moreover, the LMS algorithm can be easily 

modified to the quantized error algorithms like sign–data, 

signed-error, and dual sign algorithms and NLMS 

algorithm.  
 

A good performance of the system identification is based 

on its step size. For lower step size it will give a good 

result but take more time to reach convergent condition. If 

the step size is higher than the optimum one the 

convergent condition will be faster, but the system does 

not give a good result. Here, x- axis indicates samples and 

y- axis indicates magnitude. 
 

A. LMS Algorithm plots: 
 

 
 

x- axis: samples; y- axis: magnitude 

Figure.6:Fs=8000,d(n)=2*sin(2*pi*T*1000/Fs);µ=0.06; 

i/p=NOISE =cos(2*pi*T*1000/Fs); Ns=samples=125  

Figure.6 shows improved result for desired, estimated and 

error signals and for these specifications for the step size 

0.06. 

System given improved performance with compared to 

other step size parameters. 
 

B. Quantized LMS algorithm plots: 

Figure.7 shows some improved results of signed data LMS 

algorithm and for µ=0.022906 it giving good results. 

Figure8-9 shows some improved results of dual sign LMS 

algorithm. 
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x- axis: samples; y- axis: magnitude 

Figure.7 µ=0.022906; samples=Ns=150; Fs=8000 
 

 
 

x- axis: samples; y- axis: magnitude 

Figure.8: µ= 0.009 and order =55 ; samples =100 and 

Fs=8000 i/p cos(x) and o/p 2*sin(x) 
 

   
 

x- axis: samples; y- axis: magnitude 

Figure.9: µ =0.007 and order 55 samples 100 and Fs=8000 

I/p cos(x) and o/p 2*sin(x) 
 

 

x- axis: samples; y- axis: magnitude 

Figure.10 Fs=8000 ; µ=0.01; samples=Ns=200 
 

 
 

x- axis: samples; y- axis: magnitude 

Fig 11 Fs=8000; µ=0.002; samples=Ns=200; 
 

Figure.10-11shows good performance of signed error lms 

algorithm and the adaptive system tracks desired signal 

and for step size value 0.01 system is fast but tracking 

performance is not good  but for µ=0.002 it is taking more 

time to get steady state in the same time error fluctuated 

and giving good tracking performance. Figure.12-15 

shows good performance of normalized LMS algorithm 

and the adaptive system tracks desired signal. Step size 

values 0.000605 gives improved tracking performance 

compared to other values of step size parameter. Figure.16 

indicates comparison of error performance for different 

adaptive algorithms for NLMS algorithm µ = 0.0006 and 

NLMS gives improved results with compared to other 

adaptive LMS algorithms for same step size parameter and 

filter size. 
 

C. Normalized LMS algorithm plots 
 

 
 

x- axis: samples; y- axis: magnitude 

Figure.12 beta µ= 0.0002 and µ 0.01; samples=200  
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x- axis: samples; y- axis: magnitude 

Figure.13 beta 0.0003 and µ as 0.01; samples=200 
 

Figure.17: Fixed system having impulse response 

coefficients of Band Pass filter output of unknown system 

i.e. desired signal proposed system shown in figure.2. 
 

 
 

x- axis: no of samples; y- axis: magnitude 

Figure.14 beta 0.0004 and µ 0.01 samples = 200 
 

 

x- axis: no of samples; y- axis: magnitude 

Figure 15 beta 0.000605 and µ = 0.01; samples=200 
 

 
 

x- axis: no of samples; y- axis: magnitude 

Figure.16: comparison of error signal for various LMS 

algorithms at same step size parameter value µ=0.01. 
  
E. Desired signal of adaptive system: 
 

 
 

x- axis: no of samples; y- axis: magnitude 
 

F. Estimated signal by lms adaptive filter: 
 

 
 

Fig.17 Beta=0.06; N=21; NS=samples=100; Fs=8000. 
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x- no of axis: samples; y- axis: magnitude 

 Fig.18 Beta=0.08; N=21; NS=samples=100; Fs=8000. 
 

Figure.18-19 shows the response of system identification 

having unknown system as 55 coefficient band pass fir 

filter and we got good tracking performance at step size 

parameter 0.08 than 0.06 with the filter order N=21  
 

V. CONCLUSION OF THE SYSTEM 
 

The proposed system was successfully implemented using 

LMS, NLMS and various quantized LMS algorithms. The 

same system was implemented for both the systems 

proposed shown in figure.1 and figure.2. Figure.6-15 gives 

the results of proposed system shown in figure.1. NLMS 

algorithm given improved results with compared to other 

algorithms. Figure.15. gives the comparative study of 

various adaptive algorithms at same step size parameter. 

Figure.16-18 gives the results of proposed system shown 

in figure.2. The proposed system demonstrated with 

considering band pass filter as unknown system and the 

output of band pass filter will be desired signal and the 

adaptive filter matches its output with the desired signal 

hence the characteristics of unknown system has been 

estimated using proposed system. Same system was 

implemented on real time using TMS320C6713 processor 

using LMS algorithm at step size value at 𝜇 =0.6.  
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